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ABSTRACT 
 

 
This study makes a comparison of LIBS emission from molecular species in plasmas produced from organic 
residues on a non-metallic substrate by both a 5 ns Nd:YAG laser (1064 nm) and a 40 fs Ti:Sapphire laser (800 nm) 
in air and argon atmospheres. The organic samples analyzed had varying amounts of carbon, nitrogen, hydrogen, 
and oxygen in their molecular structure. The characterization was based on the atomic carbon, hydrogen, nitrogen, 
and oxygen lines as well as the diatomic species CN (Β2Σ+ - X2Σ+) and the C2 (d3Πg - a3Πu). Principal Component 
Analysis (PCA) was used to identify similarities of the organic analyte via the emission spectra. The corresponding 
Receiver Operating Characteristics (ROC) curves show the limitations of the PCA model for the nanosecond regime 
in air. 
 

Keywords: Organic residues, explosive residues, atomic spectroscopy, molecular spectroscopy, laser induced 
breakdown spectroscopy, principal component analysis, receiver operator characteristics curves 

 
1. INTRODUCTION 

 
The ability to discriminate energetic materials from other organic samples has been a pressing issue in the field of 
detection.1,2,3 As the unlawful use of energetic materials continues to evolve, so too must the detection and 
regulation of these dangerous chemicals. In order to detect energetic materials in all forms, they must be studied and 
characterized. It is important to understand the influence of the surrounding atmosphere on the LIBS analysis of 
organic materials, which are largely comprised of carbon, nitrogen, hydrogen, and oxygen. Previous studies have 
shown that atmospheric nitrogen and oxygen can be ionized together with sample constituents, and as a consequence 
skew the interpretation of the resulting spectra. This becomes extremely important when trying to detect explosives, 
due to the fact that most energetic compounds contain higher mole fractions of oxygen and nitrogen compared to the 
carbon and hydrogen in non-energetic organic materials. 
 
The main objective of this study is to answer the question of whether or not it is possible to detect and discriminate 
energetic materials in a single laser shot in air atmosphere. As such this study focuses on characterizing the 
spectroscopic signatures of organic residues in various laser regimes, and understanding how the atmosphere may 
play a role in the skewing of the detection and discrimination. All of this leads to answering the questions of whether 
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Turner spectrometer (2500i – Acton) equipped with both a 150 l/mm grating as well as a 600 l/mm grating. The 
spectrometer is equipped with an iCCD camera (PI Max Gen II Princeton). Although the same collection optics 
were used throughout the experiments the collection timings for the recorded spectra are different. For the 
femtosecond spectra the detector gate width is 50 μsec and is delayed 40 ns after the laser, while the nanosecond 
spectra has a gate width of 10 μsec and is delayed 50 ns after the laser. 

3.4 Organic Samples 

A variety of organic samples was used throughout the experiment, and can be found in Table 1. 

Table 1. List of organic samples and their respective solvent: ethanol (ETOH), acetonitrile (ACN), and water (H2O). The 
explosives are denoted in italics. 

 

The samples are all prepared in a similar fashion. The organic sample is first measured and mixed with the 
appropriate amount of solvent (acetonitrile, ethanol, and water.) in order to achieve a 1000 ppm solution. Using an 
Eppendorf pipette, 70 μL are deposited onto a 1 cm x 1 cm square silicon wafer substrate. Enough time is allowed to 
elapse in order to let the solvent evaporate thus leaving only an organic residue. In the case of the water solvent, the 
wafer is placed on a hot plate in order to evaporate the water. The organic residue concentration is on the order of 50 
μg/cm2, which results in a thickness of approximately 500 nm; however, the residues are not evenly distributed.  

4. RESULTS and DISCUSSION 

Upon applying the PCA analytical model to the various laser regimes the following ROC plots were generated. The 
analytically built models were constructed using a Czerny-Turner spectrometer for detection. This leads to a 
significant increase in the variability of the spectra due to having to take six laser shots, in order to complete one 
spectrum (1 acquisition per spectral variable). Although the laser used was fairly stable there was still a shot-to-shot 
fluctuation of approximately 8%. 

4- nitrotoluene (p-NT) / (ACN) 2,4,6- Trinitrotoluene (2,4,6-TNT) / (ACN) 

1,2- Dinitrobenzene (1,2-DNB) / (ACN) Cyclo-1,3,5- trimethylene -2,4,6- trinitramine (RDX) /  
(ACN) 

1,4- Dinitrobenzene (1,4-DNB) / (ACN) 1,2,4,5- Benzenetetracarboxylic acid (BTCA) / (ETOH) 

1,3- Dinitrobenzene (1,3-DNB) / (ACN) Benzoic Acid (BA) / (ETOH) 

2,3- Dinitrotoluene (2,3-DNT) / (ACN) Benzophene (BP) / (ETOH) 

2,4- Dinitrotoluene (2,4-DNT) / (ACN) Polyacrylic Acid (PAA) / (H2O) 

3,4- Dinitrotoluene (3,4-DNT) / (ACN) Pthalic Acid (PA) / (ETOH) 

Tris (hydroxmethyl) aminomethane (Tham) / (H2O) Fluoranthene (Fluor) / (ETOH) 

Theophylline (TP) / (H2O) 1- Cyanonaphthalene (CN) / (ETOH) 
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Fig 11. ROC Curve evaluating the PCA analytical models for the ns IR regime in an air atmosphere. 
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Fig 13. ROC Curve evaluating the PCA analytical model for the fs IR regime in an air atmosphere. 

The highest ROC curve area was found to be that of the ns IR regime, with an area of 0.58. This result leads to the 
conclusion that improvements to the model and the data acquisition have to be carried out to be able to conclude that 
the discrimination between organics can be performed in a single laser shot. In order to observe how the air 
atmosphere plays a role in the emission, spectroscopic signatures of the Fluoranthene organic residue are observed. 
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Fig 14. Fluoranthene Molecule 
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Fig 15. Comparison of spectra under air and argon in the nanosecond regime. 

Figure 15 shows spectra centered in the CN violet bands (Δv = 0) at 388.5 nm and it is evident that there is 
molecular recombination occurring. This means that although there is a higher discrimination in the air, there is also 
a skewing of the data due to bias of the molecular recombination. Since CN recombination in the argon atmosphere 
is not evident, the analytical model that is constructed for air buffer gas is not based on information from the sample 
itself. 

The femtosecond regime is found to have a slightly lower ROC curve area of 0.54. However, there is little evidence 
of molecular CN recombination, as shown in the spectra in Figure 16. 
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Fig 16. Comparison of spectra under air and argon in the femtosecond regime. 

Any signal CN recombination emission is clearly contained within the signal-to-noise ratio in both the air and argon 
atmosphere. The evident lower signal-to-noise ratio in the femtosecond regime is also thought to contribute to the 
lower ROC curve area. 

5.0 CONCLUSIONS 

The analytical models as shown by ROC curves, make it clear that improvements need to be made to the data to 
which the models are applied. Improvements to factors such as the signal-to-noise ratio could improve the level of 
discrimination of organic residues on a non-metallic surface with a single laser shot. Caution has to be taken, 
however, in the nanosecond regime due to the bias towards molecular CN formation. Since there is no emission 
from molecular CN in argon atmosphere in the nanosecond regime, the model established in air is not solely based 
on sample information, because there are also contributions from the atmosphere. This is not the case in the 
femtosecond regime; however, the signal-to-noise ratio does not support single shot discrimination. Any CN 
formation from carbon and nitrogen recombination that may occur is not visible above the noise in either the air or 
argon atmosphere in the femtosecond regime. These results make a case for femtosecond laser interaction being a 
better candidate than nanosecond laser interaction to build a stable library for discrimination of organic compounds. 
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